1. $P(A)=0.7, P(B)=0.4, P(A B)=0.2$.
a. Venn diagram. Hint: $\mathbf{P}\left(\mathbf{A ~ B}^{C}\right)=\mathbf{P}(\mathbf{A})-\mathbf{P}(\mathbf{A B})$

$$
A B=A \cap B
$$

b. Tree diagram. Hint: $\mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{A B}) / \mathbf{P}(\mathbf{A})$.

TotAl PR LAN

1. $P(A)=0.7, P(B)=0.4, P(A B)=0.2$.
c. From the Venn Diagram, find $P(B)$ and $P(A \mid B)$.

d. From the Tree Diagram determine $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ (Bayes).

2. $\mathrm{P}(\mathrm{OIL})=0.1, \mathrm{P}(+\mid \mathrm{OIL})=0.7, \mathrm{P}(+\mid$ no OIL$)=0.2$.
a. Tree.

NET工具

$-20-80+400$ $=320$
$-20-1040$
b. $P(+)=.1 .7+.9 .2$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{OILI}+) \text {. DEF } \\
& \text { (BAYES) } \frac{P(O / \angle+)}{P(+)}=\frac{.1 .7}{.1 .7+.9 .2}
\end{aligned}
$$

NET
c. Costs: test $=20$, drill $=60$. Gross from oil $=400$.
$\mathrm{E}($ NET return from "just drill") $=$

$$
E(N \in I I)=\sum^{\prime} x p(x)=340(01)+(-60) .9
$$

$$
\begin{aligned}
& \text { d. } \mathrm{E}(\mathrm{NET} \text { from "test, drill if }+ \text { " })=\mathcal{R}_{R}-22.8 . \\
& E(v E T \text { II })=\sum \sum_{i} x P(x)=.1 .7(320)+.1 .3(-20) \\
& +.9 .2(-80)+.9 \cdot 8(-20) ? ?
\end{aligned}
$$

There was no question 3.
a. What is the approximate probability of landing on Boardwalk (or any other property) in Monopoly?

b. If the rent on that property is $\$ 200$ what is the expected return to the owner from one player-circuit of the board?

$$
\begin{array}{ccc}
x & 200 & 0 \\
p(x) & 1 / 7 & 6 / 7
\end{array} \quad E X=\frac{200}{7}
$$

c. If a player owns properties with rents $\$ 100, \$ 150, \$ 300$ what Is the expected return from three player-circuits of the board?

$$
100\left(\frac{1}{7}\right)+150\left(\frac{L}{7}\right)+300\left(\frac{1}{7}\right)
$$

4. $P(A)=0.4, P(B)=0.5, P(A B)=0.20$.
a. $P(A \cup B)$.
$P(A \cup B)=P(A)+P(B)-P(A B)$ always.
 $=.4+.5=.7=.7$
b. From definition $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$.
$\mathbf{P}(\mathbf{B} \mid A)=\mathbf{P}(\mathbf{A B}) / \mathbf{P}(\mathbf{A})$.

$$
.2 / .4=1 / 2
$$

c. Are A, B independent of each other? Show reasoning! Does $\mathbf{P}(\mathbf{A B})=\mathbf{P}(\mathbf{A}) \mathbf{P}(\mathbf{B})$?
5. $\mathrm{P}(\mathrm{A})=0.4, \mathrm{P}(\mathrm{B})=0.3, \mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.6$.
a. Give $\mathrm{P}(\mathrm{AB})$.
$P(A B)=P(A) P(B \mid A)$ always if $P(A)>0$.

$$
P(A B)=P(A) P(B \mid A)=.4(.6)=.24
$$

b. Are A, B independent? Is $\mathbf{P}(\mathbf{B})=\mathbf{P}(\mathbf{B} \mid \mathbf{A})$?

$$
.3 \neq .24 \text { No - A, B ARE }
$$

c. Fill out a complete Venn Diagram.
6. $X=$ draw from $\left\{\begin{array}{ll}24 & 4\end{array}\right\}$. Y draw from $\{$

Distributions
a. $E X=2\left(\frac{1}{4}\right)+4\left(\frac{1}{4}\right)+4\left(\frac{1}{4}\right)+6\left(\frac{1}{4}\right)=16 / 4=4 \quad 02(0151) 2\left(\frac{1}{4}\right)+4\left(\frac{1}{2}\right)+6\left(\frac{1}{4}\right)$
b. $\operatorname{Var} \mathrm{X}=\mathbf{E} \mathbf{X}^{2}-(\mathbf{E X})^{2}$

$$
\begin{align*}
E\left(x^{2}\right) & =2^{2}\left(\frac{1}{4}\right)+4^{2}\left(\frac{1}{2}\right)+6^{2} \tag{1}\\
& =1+8+9^{2}=18
\end{align*}
$$

$\operatorname{Var} X=18-4^{2}=2$

$$
\operatorname{sd} X=\sqrt{\operatorname{Var} X}=\sqrt{2}
$$

c. $E Y=12 / 4=3$
$\operatorname{Var} Y=12-9=3$
d. $\mathrm{E}(4 \mathrm{X}-\mathrm{Y}+3)=($ addition rule of E$)$
$4 E x-E y+3=4(4)-3+3=16$ REARNLEESS OF DEPENDENCE

$$
\begin{aligned}
& \text { e. If } \mathrm{X}, \mathrm{Y} \text { are INDEPENDENT, } \\
& \operatorname{Var}(4 \mathrm{X}-\mathrm{Y}+\mathrm{B})=\operatorname{Var}_{5 q} 4 X+\operatorname{Var}(-y)
\end{aligned}=16(2)+(-1)^{2}(3)
$$

7. $E X=-\$ 0.60$ and $\operatorname{Var} X=\$ 9$. $\mathbf{T}=\mathbf{X} 1+\mathbf{X} 2+\ldots . .+\mathbf{X 1 0 0 0 0}$ (independent plays)
a. $\mathrm{ET}=\mathbf{E X 1} \mathbf{+ E X} \mathbf{X}+\ldots . .+\mathbf{E X 1 0 0 0 0}=10000(-\not \boxed{6} 60)=-6000$
b.

$$
\begin{aligned}
& \operatorname{Var} \mathrm{T} \stackrel{\text { if independent } r . v .}{=} \operatorname{Var} \mathbf{X 1}+\ldots+\operatorname{Var} \mathbf{X 1 0 0 0 0}=10000(9) \\
& \sigma_{\mathrm{T}}=\sqrt{\operatorname{Var} \mathrm{T}}=\sqrt{100009}=\sqrt{10000} \sqrt{9}=300
\end{aligned}
$$

c. Approximate distribution of T. (CLT "central limit theorem).

